Measuring Up

Tools for High Performance Building Performance

RESNET 2008
San Diego, CA
February 20, 2008
Bill Spohn

© Bill Spohn, testo, inc.

Measuring up

- Building performance evaluation Observation and measurements.
- > Principles
- > Practices
- > Devices
 - Accurate
 - Powerful
 - Affordable

Bulk Assessment

- Thermal imaging
 - Detects thermal patterns
 - Non-uniform temperatures
 - Hot where it should be cold
 - Cold where is should be hot
- Used primarily as an investigative tool
- Proper training is essential

\$5,000 + up

Thermal Imaging

- > Insulation verification
- Locate air duct leakage
- > Building performance
- > Structural verification
- > Moisture intrusion
- > Problem solving

Important Features

- Lens system
 - High-quality, "wide-angle" (32°)
 - Telephoto option
- Close focus (4 inches)
- > Detector array size (eg. 160 x 120 Pixels)
- Interpolated display (eg. 320 x 240)
- > NETD < 0.1°C
- Ability to easily focus
- SD memory card storage
- Palettes
- Simple operating system
- Still and video software
- Report software
- USB connection
- Battery technology/performance (Li-ion)
- Carry case
- Digital camera/lighting system

© Bill Spohn, testo, inc.

Complete Analysis

- In addition to thermal imaging:
 - Relative Humidity
 - Material Moisture
 - Air Velocity
 - Air Leakage
 - Pressure zones
 - System performance
 - Heating
 - A/C
 - R-Value
 - Occupant Safety
 - Visual Observations

It's in the air

- Has mass
- Holds and releases thermal energy
 - N.A. Heat Transfer medium
- Holds and releases other ****
- > Has a specific volume
- > Is compressible
- Holds and carries moisture
- It's a gas!
 - Pressure induces migration

Measuring Airflow

- > Standard air
 - 14.7 psia
 - 69 °F
 - 0% rH
- Indirect measurement Density correction
- Velocity
- > CFM
- > Effect of turbulence

Thermal Anemometer

- Wind-chill factor
- > Up to 2,000 fpm
- > Up to 160 °F
- > Hot wire vs. hot ball
- Density correction
- Minute streamlines

Pitot static / Pitot tube

- Kinetic energy to pressure
- > Up to 20,000 fpm
- > Up to 930 °F
- Corrosive atmospheres
- Density correction
- > Minute streamlines
- > Alignment

Rotating Vane Anemometer

- > A fan in reverse
- Large diameter (2.3" to 4")
 - Turbulent flows
 - Up to 140 °F
 - 4,000 fpm
 - Automatic CFM Calculation
 - Area + Grille Factor
- > Small diameter (1/2")
 - Turbulent flows
 - Up to 140 °F
 - 8,000 fpm
 - Fits in a duct
 - Automatic CFM Calculation
 - Area
- Alignment
- Averaging
- No density correction!

© Bill Spohn, testo, inc.

Infrared Temperature

\$200 +

- > Emissivity
 - Adjustable
- "Here Spot!"
 - Optics ratio
 - Average temperature
- Scan rate
 - You
 - The equipment
- > Angularity
- Dewpoint distance
- Combined with contact measurement

Humidity

\$100+

- Sling Psychrometer
 - Evaporative cooling
 - Cotton wick
 - Distilled water
 - Proper air-speed
- Dew point mirror
 - Visual condensation
- Capacitive sensor
 - Farad change
- Measurement technique
 - Response time
- Wireless

Material moisture

\$200+

- Dry and weigh
- > Scatter field
- Conductivity
- > Contact
- Moisture ratio at equilibrium
- > Microwave

202% 765

Pressure

$$P = \frac{F}{A}$$

- > Force per unit area
- Membrane displacement, gearing
- Water manometer
- Electronic sensors
- Differential
- > Factors
 - Resolution
 - Hysteresis
 - Dead-band
 - Temperature
 - Orientation

Impact on Building Inspection

- Airflow leads to wind-chill
- Humidity as a source of moisture
- Moisture in materials
- Thermal damage
- The 4 "P"s
 - Pollutant
 - Pathway
 - Pressure
 - People

Building HVAC Systems

- Load Calculation
- Equipment Selection
- Equipment Installation
- > Set up
- > Performance
 - Comfort
 - Energy
- Diagnostics
- Safety

The Industry-recognized HVAC QI Specification

www.acca.org/tech/qispec.pdf

Combustion Diagnostics

\$900+

- Set-up
 - Draft, fuel pressure
- Efficiency
 - O2, temperature
 - Maximize CO2?
- Safe Operation
 - Draft
 - Carbon Monoxide (CO)
- Proper measurements
 - Condense water
 - Particles
 - NO gas filter.. "false CO"
- Performance
 - BTU/hr

A/C System Performance

- Energy Conversion
- Enthalpy change
 - Wet-Bulb (humidity)
- > Mass flow
 - Air CFM
- > Performance
 - BTU/hr or Cooling Tons
- > "Gauge free"

A/C System Set-Up

- > Airflow
 - CFM
- Enthalpy change
 - Wet-Bulb (humidity)
- Refrigerant Charge
 - EPA 608 license
- Only as necessary!

\$500 - \$1500

U-Value / R-Value

- Need delta t of 15°C (27°F)
- Best if night time readings of 3 hours
- Convert to R-Value
- > 1 K·m²/W ≈
 5.67446 ft²·°F·h/Btu

\$1700

© Bill Spohn, testo, inc.

Safety

- Fuel gas leakage
- > Refrigerant leakage
- Carbon Monoxide (CO)

\$450

Visual Inspection

- Human perception
 - Shared view
- > Assessment of condition
- Access to equipment
- Clarity
- Durability
- > Recording
- "Bubba says..."

© Bill Spohn, testo, inc.

In the words of Yul Brenner

- > Et cetera
- > Et cetera
- > Et cetera
- > DuctBlaster
- > Blower Doors
- > Et cetera

Good Measurements

- > Defendable
- > Repeatable
- > Digital vs. "human"
 - Faster
 - Interpretation
 - "Tamper-resistant"
 - Easy documentation
 - Post-analysis
 - "Streaming data"