Measuring Air Leakage Pathways in Tall Buildings by: Colin Genge www.retrotec.com

Myth Buildings are smoke-tight

Reality

10 to 100 x more leaks than expected!

1993 WTC Garage Bomb

Smoke on 25th floor in minutes

1980 MGM Grand Casino Fire

Smoke deaths on 19th to 24th floors

Now rooms tested for smoke tightness

Why Smoke Moves

Pressure across a hole

- Stack Pressures
 HVAC (Heat Vent Air Conditioning) pressures
 Wind
 Diffusion – slow
- MGM fire created 50 to 100 Pa

Why Smoke Moves

Below Hole size measured with door fan

Minimum egress time calculation

Min. Egress Time = V x c x 1.271 / $Pa^{0.5}$ / ELA /F

- $V = Volume in m^3$
- c = Smoke concentration (1% in our examples)
- 1.271 = Constant for flow formula (NFPA2001 Appendix C)
- Pa = Driving force in Pa

F

- ELA = Door-Fan measured leakage area with 0.61 discharge coefficient
 - Decimal fraction of portion of leaks subjected to smoke

Surprise #1 NFPA12A and NFPA2001 Clean Agent Standard

Clean Agent Suppression System

Ineffective smoke barrier

Holes seen from inside with lights

out

Unnecessary discharge

FM200 Discharge Courtesy of Great Lakes Chemical

Walls leak over a range of 500:1

Bottom and Tops of smoke barrier walls leak

large hole for a small cable

Walls	Leaks	Egress	
	cm²/m²	minutes	
Extremely poor	50	1.40	
UBC code	10	6.70	
Typical maximum	5	13.00	
Minimum measured	0.6	98.20	
Achievable	0.1	600.00	

Specific Leakage Areas cm²/m² [@] 50 Pa (=0.5 in²/100ft² EfLA @ 4 Pa) of surface area

Stairwells fill with smoke quickly

Doors leak Not re-evaluated

Stairwells fill with smoke quickly

	Specific Leakage Area	Egress time		
	cm²/m²	minute s		
		Real gent		
typical maximum	5	0.10		
minimum measured	0.3	1.60		
Achievable	0.1	4.80		

Dampers

Holes for phon<mark>e</mark> lines

With fusible links don't keep out smoke

Slabs leakage varies over range of 750:1

Walls	Leaks	Egress
	cm²/m²	minutes
Extremely poor, est.	15	0.3
UBC code	5	0.9
Maximum measured	0.97	4.0
Minimum measured	0.05	238.0
Achievable	0.02	280.0

Vertical pipes through slab

Elevator Lobbies not isolated

Ducting often damaged

Isolating Component Walls

First, the door-fan measures total leaks

Flow (m3/s)	Press (Pa)	Leak (m2)
0.600	25	0.15
15 11		a selas

Isolating Component Walls

Neutralized flow across component using 2nd doorfan

Flow (m ³ /s)	Press (Pa)	Leak (m²)
0.600	25	0.15
0.400	25	0.10
Leakag	je →	0.05

Test Example 9 Storey University Residence

9 Storey University Residence

Stairwell #1

0.141 m³/s Supply in Hall

Kitchen

.

Stairwell #2

This Reduces to...

...And Simplifies Even More To...

Where $E_o = E_s + E_d + E_w$

Step 1a

Measure Individual Floor Leakage

Door-Fan Blower #1 pressurizes top floor

Step 1b

Measure Individual Floor Leakage

Door-Fan Blower #1 depressurizes top floor

Neutralize D_u Slab

Blower #2 added to neutralize flow through Du
 Blower #1 only measures E_o

Step 2

Neutralize D_u Slab

Blower #2 also measures D_o + C_u
 (D_u is neutralized)

Step 3

Neutralize C_u Slab

Blower #3 added

Blower #2 now only measures D_o

 $E_{0} = .42$

 $D_{0} = .37$

 $D_{u} = .13$

 $C_{u} = .16$

.42

Neutralize C_u Slab

Blower #3 measures C_o + B_u

Step 4

Neutralize B_u Slab

Blower #1 moved to B floor
 Blower #3 now only measures C_o

Neutralize A_u Slab

Blower #2 moved to lobby

Another example: Similar Outdoor leakage but very tight slab

The previous example's results were

Leakage to outdoors surprisingly similar but leakage to floor below very different.

 f_{0} f_{0} f_{0} f_{0} f_{1} f_{2} f_{2}

 $D_{u} = .13$

 $C_{u} = .16$

Measure Ductwork Leakage

Duct Flow (E_d) included in $E_o : E_o[.42] = E_s + E_d + E_w$

Measure Ductwork Leakage

Step 6

Measure Ductwork Leakage

Use Temporary Sealing to Neutralize Duct Flow, or
 Pressurize Ductwork to 50 Pa

 $E_{w} = .31$

 $E_{\rm S} = .03$

 $E_{d} = .08$

 $D_{u} = .13$

 $A_{u} = .10$

 $E_{0} = .42$

 $B_{0} = .30$

 $A_0 = 1.1$

 $D_o = .37$ $C_u = .16$

 $C_0 = .31$ $B_u = .11$

Measure Stairwell Leakage

Use Second Blower to Neutralize E_s

Measure whole building

Now look at comparative results of other buildings.

Туре	Description	Ht.	Envelope area	Vol.	Leakage Area	SLA	Driving Force	Min Egress Time
		(m)	(m²)	(m³)	(cm²)	(cm²/m²)	(Pa)	(Min)
Hydro Dam	Stairwell	60	1015	800	1738	1.71	75	0.23
Hydro Dam	Stairwell	80	915	800	2361	2.58	100	0.14
Hydro Dam	Stairwell	80	1412	800	5270	3.73	100	0.06
Apartment	Stairwell	27	360	270	140	0.39	.50	1.16
Her and the	No.C.	2012						
Hydro Dam	Elevator shaft	60	1003	800	12110	12.07	75	0.03
Hydro Dam	Elevator shaft	80	1210	1000	5483	4.53	100	0.08
	Carl Standards				the Res			
Office Tower 2 nd floor	Elevator lobby	4	480	576	4305	8.97	10	0.18
Office Tower 2 nd floor	Elevator doors	30	4	180	145	36.25	25	1.05
	1911 1000			1		e ne	505	
	Carlo States		1. Jak the	6.00				15 1 3 3
Computer floor	Lower slab and walls	5	7000	11000	4164	0.59	15	2.89
Computer floor	one partition wall	5	300	11000	300	0.59	15	40.1
		. C 2		3 A.M.		1		
Apartment	8+9 th floor, lower slab	6	1656	3024	1300	0.79	4	4.9
Apartment	6+7 th floor, lower slab	6	1656	3024	1600	0.97	4	4.0
Office Tower 2 nd floor	Slab between 1 st & 2 nd floor	4	1800	7200	152	80.0	2.5	126.9
Apartment	4+5 th floor, lower slab	6	1656	3024	1100	0.66	4	5.8
Office Tower 2 nd floor	Slab between 1 st & 2 nd floor	4	1800	7200	81	0.05	2.5	238.2
Apartment	2+3 rd floor, lower slab	6	1656	3024	1000	0.60	4	6.4
UBC 905 standard	Floors and roofs	4	2500	4000	12500	5.00	2.5	0.90

Examples of Tightness Standards

Туре	Description	Ht.	Envelope area	Vol.	Leakage Area	SLA	Driving Force	Min Egress Time
Sour Local in	Contraction of the	(m)	(m²)	(m³)	(cm²)	(cm²/m²)	(Pa)	(Min)
UBC 905 standard	Walls	4	2500	4000	25000	10.00	2.5	2.50
UBC 905 standard	Exit enclosures	4	2500	4000	8750	3.50	10	0.61
UBC 905 standard	Other shafts	4	2500	4000	37500	15.00	10	0.14
UBC 905 standard	Floors and roofs	4	2500	4000	12500	5.00	2.5	0.90
Energy Efficient House	R-2000 maximum	3	725	900	225	0.31	10	5.10
NFPA2001	FM200 protected zone	4	2500	4000	10000	4.00	10	0.54

Existing standards allow far too much leakage.

10 to 100 times more Smoke movement !

Smoke simulation programs work better with real data?

© Copyright Retrotec 2003 door-fan testing

Hole are Easily Measured @ 1-hour per floor

Inspections = surprises

Correct design + Proper materials = Smoke tight buildings

END www.retrotec.com