

Energy Modeling with Real-Time Weather: Understanding Utility Bills

RESNET 2008 February 20th, 2008 Dean Gamble

Presentation Overview

- Real-time weather data is an important component of building analysis
- Real-time weather data is abundant
- Case study illustrating how real-time weather data was used to improve utility bill allotments

Definitions

- Heating Degree Days (HDD):
 HDD = Base Temp Average Daily Temp
- Cooling Degree Days (CDD):
 CDD = Average Daily Temp Base Temp
- Annual Degree Days is the sum of these for 365 days
 Annual HDD = (65 55) * 365 = 3,650

Important Component of Building Analysis

Variation of -11% to +12% in heating degree days Variation of -16% to +15% in cooling degree days

Source: EIA

Important Component of Building Analysis

Present Values of Change in Building Sector Energy Due to Weather Variations

Billion 2003 \$

Source: EIA

Real-Time Weather Data is Abundant

- Multiple free, public sites with data:
 - <u>http://www.engr.udayton.edu/weather/</u>
 - <u>http://www.eere.energy.gov/buildings/energyplus/cfm/weatherdata/weatherdata/weather_request.cfm</u>
- Though some data processing may be needed prior to use

More Than Just Degree Days

- Wet bulb temperature
- Dry bulb temperature
- Cloud Type
- Presence of snow
- Presence of rain
- Wind speed
- Custom weather files can be created by replacing certain parameters with real weather data

Context:

- Residential tenants provided with a monthly utility bill allotment
- Development consisted of six housing configurations, with two to sixteen units for each configuration:

- Allotments were defined by simply averaging consumption across all units.
- Residents were billed/credited for deviating from the allotment

Challenge:

- Existing methodology did not properly account for differences in:
 - architectural characteristics
 - energy efficiency features
 - actual weather
 - occupant behavior
- Impact from anomalous energy consumers was distributed across all occupants rather than being attributed to outliers
- Existing methodology produced high tenant dissatisfaction
- Could the existing methodology be improved?

Solution:

- Use energy modeling to create profiles of each unit type
- Account for:
 - Exact architectural characteristics
 - Exact energy efficiency features
 - Actual weather conditions
 - Allotted occupant behavior

Solution:

- To account for real-time weather:
 - Developed custom weather files for time period that matched consumption data
 - Completed hourly simulations for each unit type using custom weather files
- Benchmark resulting profiles against utility bill data to ensure accuracy

Comparison of TMY vs. Actual Degree Days

	TMY	Actual	% Difference
HDD	4032	3576	11%
CDD	1671	1565	6%

12

Impact of Using Real Weather Data

ſ	Energy Consumption (kWh)			Actual Vs. Real	Actual Vs. TMY
Γ		Predicted	Predicted	Weather	Weather
		Using Real	Using TMY	Simulation	Simulation
	Actual	Weather Data	Data	(%)	(%)
Jan	2,108	2,163	3,158	3%	33%
Feb	2,293	2,305	2,548	1%	10%
Mar	1,859	1,613	1,751	-15%	-6%
Apr	1,329	1,180	1,272	-13%	-4%
May	1,363	1,152	1,157	-18%	-18%
Jun	1,614	1,771	1,879	9%	14%
Jul	1,723	2,135	2,148	19%	20%
Aug	1,731	2,158	2,084	20%	17%
Sep	1,225	1,523	1,867	20%	34%
Oct	1,571	1,165	1,083	-35%	-45%
Nov	1,538	1,375	1,449	-12%	-6%
Dec	2,020	1,962	2,104	-3%	4%
Total [20,373	20,503	22,501	1%	9%

Results:

Unit Type 1 – 8 Units

Unit Type 2 – 8 Units

Close Alignment

Close Alignment

Results:

Unit Type 3 – 16 Units

Unit Type 4 – 10 Units

Generally Close Alignment

Close Alignment

Results:

Unit Type 5 – 4 Units

Unit Type 6 – 2 Units

Generally Close Alignment

Alignment Not Close Due to One Outlier

Analysis of Anomalous Results:

Unit Type 5

Unit Type 6

ICF

Conclusions:

- Program design can be improved by using building simulation to account for:
 - Architectural characteristics
 - Energy efficiency features
 - Actual weather conditions
 - Allotted occupant behavior
- This improved approach can help identify outliers and properly credit or charge them for their variation in behavior
- In contrast, averaging utility bills does not properly credit or charge outliers

Overall Conclusions

- Actual weather conditions are a key driver of building consumption
- Real-time weather data is free and publicly available
- Incorporating real-time weather data into building analysis can improve accuracy and reduce number of unknown variables related to consumption
- Incorporating weather data into hourly simulations provides the highest level of accuracy