Perfect Opportunity RESNET Building performance Conference February 19-21, 2007

Goals

Outline the need for energy conservation
 Discuss parameters affecting energy conservation
 Proposal and discussion new more equitable metric
 Comments/input

Energy Today and Into the Future

Perception short on Energy
Worse yet, supplies decreasing
Cost on increasing
40% consumed by buildings
Favorable predisposition to conservation

Drivers

\$\$\$
Desire/Demand to conserve energy \$\$

Don't care how just conserve

Technical Know-how

We have the technology

We have the materials

What is holding us back

\$\$\$

Antiquated 50 yr old metric that addresses single dimension of heat transfer
O'K initially
Inadequate today

Additional Barriers

Lack of plan

 Insulation air moisture issues
 Use of code to fix all that ails us

 Direction

 Rudderless ship
 Competitors looking after self interest

The Game Is Changing

Building science

 Materials changed
 Performance changed

 The market

 The way we live
 The way we build

There is a Reason

Disclaimer
There is something lacking
References to:

Real R value
Performing R value
Real performance

Air Tightness

Numerous references of air tightness and energy efficiency relationship IECC hearings Various manufacturers Building scientists **DOE** Anecdotal evidence Lacking hard data to support claims

Air Tightness cont'd

Effective energy conservation vehicle but no credit, even Rescheck not recognizing it while others do.

Builders practice it but not credited

- Manufacturers have the know-how but lack incentive
- Designers/Consumers desire it but don't know how to get there

Code is slowly reacting without an over all plan or direction and unenforcable

Modeling Data

Modeled on RemDesign
3 homes built

Dark blue – to IRC
Hot pink - to Model Energy code
Red - to IRC but airthight

Air Leakage Control: Superior Results - Heating

In all cities, it was found to be more effective to control air leakage than to increase R-Value.

Air Leakage Control: Superior Results - Cooling

The results of this study have been verified using results from the field.

Home Specs.

Two story home

No garage

- Conditioned floor area: 2,500 sq.ft (equally distributed over 1st & 2nd floor)
- Foundation: unheated slab foundation
- Infiltration rate: 0.1ACH @ natural pressure
- Baseline home design:
 - R-13 wall
 - R-30 ceiling (vented attic)

Home Specs.

Orientation: Front facing South Window area (U-value: 0.57, SHGC:0.25): Front: 100 sq.ft. Rear: 100 sq.ft. Right: 50 sq.ft. Left: 50 sq.ft. Equipment efficiency: ■ Furnace @ 92 AFUE ■ A/C @ 13 SEER

<u>Energy savings @ 0.1ACH nat.vs.</u> <u>Variety of higher infiltration rates</u> <u>Across the country</u>

~ MMBtu = Million Btu ~Air infiltration rate unit is set at natural pressure

Boston, MA

Seattle, WA

Chicago, IL

St.Louise, MO

Denver, CO

Houston, TX

Orlando FL

Pheonix, AZ

<u>R values required to equal energy</u> <u>performance of tighter homes in</u> <u>previous examples</u> <u>infiltration rate vs. the baseline</u> <u>design (0.1ACH nat. & R-13 wall &</u> <u>R-30 ceiling).</u> Boston, MA

Seattle, WA

Chicago, IL

St.Louise, MO

Houston, TX

Orlando FL

Pheonix, AZ

Observations

Heating dominant regions show more savings than cooling dominant regions. R values have much smaller effect on energy consumption than infiltration Required R-values in dry climates reduced Required R-values in humid climates increased. Latent Heat/Humidity/Moisture hold commanding role in energy conservation

Other opportunities to conserve

Find the thermal bridge

Find the thermal bridge

Thermal bridge problem

2x6 Framed Wall

R-value Comparison

Wall Configuration (Stud Size and Spacing)

Adding studspace insulation is not helpful!

Wall Configuration (Stud Size and Spacing and Cavity Insulation R-value)

Impact of Insulating Sheathing

Steel studs are even "better"

• Gaps in batt insulation on both sides

•hard to fill steel studs

Hot — Hot air = light

Cold air = heavy

R-Value in the Real World

Summary

Heat transfer Conductance R-value Radiation emissivity Convection Air/wind movement Mass transfer moisture

REMA

insulatio n	Material R, emissivity	Material Moisture diffusion	Material Air Permeance	Material REMA factor
Glass fiber	Xg	Yg	Zg	REMAg
Cellulose	Хс	Yc	Zc	REMAc
LDI	XI	YI	ZI	REMAI
PU	Хр	Үр	Zp	REMAp
EXP	Xe	Ye	Ze	REMAe

Consideration

Heat transfer parameters measurable R-value, conductance Radiation, emissivity Effect of convection Moisture/humidity Complicated, many variables Lack of adequate modeling tools

Proposal

Launch a study to quantify and define the relationship between R-value, air tightness and energy conservation Different materials Different assemblies Different climates Already behind, further delay makes it just that much harder

Plan

Use the newly acquired data bank to create a more accurate thermal performance determination tool.

Concept

Create a "blended metric"/index for insulation to augument current antiquated R-value

Incorporate air tightness, conductive and convective property into single number
 Concept not novel (Canadian window rating tool – CSA A440)

Challenge

Needs to be simple and accurate
 Easy to use by building officials, industry, raters and consumers
 Prescriptive

 Table format
 Must require minimum change

The Ultimate Challenge

Promote and gain acceptance by the industry (designers, builders, raters, manufacturers) and public
 Standardize
 Introduce into the code

Next Steps?

Identify projects for potential research and similar approaches in state codes (eg Michigan, California) Bring teams together as stakeholder groups, build consensus Identify opposition and obtain buy-in Publish and promote research Create timeline project, implementation into the code

Summary

Supported and justified the need for a new improved thermal metric
Proposed a concept
Proposed a road map

Comments?
Suggestions?
Questions?