

Building America Leading the Path to Affordable Net Zero Homes

Edward Pollock U.S. Department of Energy Presentation at RESNET February 27, 2006

What is Building America?

Building America is a national residential systems research test bed sponsored* by the US Department of Energy with the goal of developing marketable designs for homes that produce as much energy as they.

* All building construction and material costs are provided as cost share by industry partners

Program Goals

- Develop designs for homes that produce as much energy as they use by 2020
- Increase comfort and air quality
- Improve quality
- Improve durability and resale value
- Community wide solutions that minimize the environmental impact

Building America's Industry Teams

Industry Teams

Team Members Include:

DOE Building America System Research

(www.buildingamerica.gov)

Technology Centers

Material Suppliers
Designers
Developers
Utilities
Manufacturers
Lead Builders

Whole-house Approach

Moving to ZEB will require significant technical advances to meet performance and cost targets

Systems Engineering Research Consider Moisture and Thermal Climate Zones

Residential Optimization Model

For all five regions, the average energy reduction attainable was 57% with best available technologies and 68% with maximum technologies.

Projected hot humid climate residential energy savings

	Current Home	Energy Star Home	2002 ZEH	2020 ZEH	
Size (sq ft)	2200	2200	2200	2500	
Typical Cost/ Incremental Cost	\$235,000	No Incremental Cost	\$75,000 over comparable conventional costs	\$20,000 over comparable conventional costs	
Kwh/day Consumption	58 kwh/day	49 kwh/day	25 kwh/day	15 kwh/day	
Renewables	0	0	50% Solar Hot Water 6 KW of PV	100% Solar Hot Water/Space Heating 3-4 KW of PV	
Percentage from Grid	100%	100%	30%	0	

About 20,000 high performance production homes, but how?

- In general, we focused on:
 - Identifying break points & creating meaningful cost trade-offs
 - Solving builder warranty & liability problems
 - Creating market differentiation
- Applied building science was the engine driving this train

System Trade-offs Summary

- HVAC downsizing (driven by right sizing, simplified ducts, and reduced loads of better windows) "finance" better windows
- Advanced framing lumber savings "finance" increased levels of insulation and air sealing
- These trade-offs are often, but not always, about cost neutral
- For Example:

Building Science Consortium Copper Moon

Features

- Unvented cathedral attic
- Low-E² spectrally selective windows
- Sealed ducts with mechanical ventilation
- Stack framing
- Blown cellulose wall and ceiling insulation

Tucson, Arizona

Cost Summary for Building America Metrics—Copper Moon, Tucson, AZ

Unvented roof	+ \$ 750
NOT installed roof vents	-\$ 500
High performance windows	+ \$ 300
Controlled ventilation system	+ \$ 150
Downsize air conditioner by 2 tons	- \$ 1000
Sealed combustion furnace	+ \$ 400
TOTAL PREMIUM	+ \$ 100

Benefits

Through research, Building America helps builders

- Lower customers' energy bills
- Improve comfort and indoor air quality
- Reduce construction costs and waste
- Reduce callbacks and warranty claims
- Offer cost-saving building system trade-offs
- Stand out in the marketplace
- Provide new product opportunities
- Learn from other builders

Reduced warranty & liability:

- Relating to comfort (draft stopping, air pressure differentials, tight ducts) that also saved energy
- Relating to mold (air pressure differentials, tight ducts) and was the result of:
 - energy conservation (more insulation and tight construction)
 - misplaced/mis-used vapor barriers
 - lack of ventilation
 - lack of water management
- Related to quality (performance metrics and testing) that also saved energy
- Related to material efficiency (drywall callbacks) that also saved energy

Builders System Performance Packages

Resources

Building America Website www.BuildingAmerica. gov Includes an extensive

document database

• New name: Technology Validation and Market Introduction

Deployment

- Integrate ENERGY STAR, Rebuild, Codes, Building America, and Energy Smart Schools
- Promote market acceptance of building technologies
- Create and use robust and sustainable partnerships for delivery of BTP programs and products
- State Energy Offices: Vital partners in technology delivery
 - Know State, local, and regional trends and needs
 - Well positioned to spark collaboration across a broad spectrum of partners, including local governments, schools, colleges and universities, business, extension services, utilities, builders, and consumers
 - Cross-program integration at state level
- Next step strategic thinking and planning

Congress Building America

- Senate & House concurrent Resolution 5/06/03 to support "Home Ownership Month"
- MOU between RESNET & Habitiat
- Provides opportunity to:
 - Provide low income energy efficient housing
 - Press coverage on energy efficient homes
 - Educate the public
 - Educate Congress

Figure 1: Front Elevation of the Mixed-Humid Climate House

Figure 2: Mixed-Humid floor plans (Right: Ground Floor, Left: Second Floor, crawlspace not shown)

Benchmark

Prototype

Building Enclosure	R-13, 16" oc + R-1 Sheathed Walls	R-19 24" oc + R-5 Sheathed Walls			
	R-25 Roof Insulation	R-38 Attic / R-35 Cathedral Ceiling			
	Low E Windows (U=0.58, SHGC=0.58)	Low E Windows (U=0.33, SHGC=0.28)			
	R-9 Crawlspace Insulation	R-10 Walls on Conditioned Crawl			
	BM Airtightness (~5"/100 sf)	BSC BA Airtightness (2.5 ins/100 sf)			
Mechanical	6.8 HSPF ASHP	8.5 HSPF Air Source Heat Pump			
	10 SEER A/C System	14 SEER Cooling System			
	R-5 Ducts 15% Leakage	Ducts in Conditioned Space			
	0.88 EF Electric Tank Hot Water	0.94 EF Tank Hot Water Heater			
	ASHRAE 62.2 Exhaust Fan	ASHRAE 62.2 Ventilation by FanCycler			

 Appliances and Lights
 Incandescent Lighting
 Fluorescent Lighting

 Regular Appliances
 ENERGY STAR Appliances

Table 1: Parametric Analysis Results

				Total Source Energy Savings (heating, cooling, dhw, lighting, appliances, plug loads)				
		Estimated	Estimated					
Parametric		Individual	Cumulative	over BA		Annual	Simple	Increment
Run ID	Description of step	Cost of change	Cost of change	Benchmark ¹	Incremental	energy cost	payback (yr)	payback (yr)
Benchmark		n/a	n/a	n/a	n/a	\$1,288	n/a	n/a
1	Benchmark + Enclosure Upgrades	\$400	\$400	6.0%	6.0%	\$1,210	5	5
2	1 + Mechanical Upgrades	\$1,000	\$1,400	21.9%	16.0%	\$1,000	5	5
3	2 + Lights & Appliances	\$350	\$1,750	27.4%	5.4%	\$929	5	5

🛲 Building 🧏

U.S. Depar

rav

Figure 4: Total Source Energy Consumption Reduction Graph

Outreach Through Educational Institutions

- Universities and Colleges
- Community Colleges
- Trade Schools
- Extension Service
- Professional Associations

Plans For Working with Universities

- Pilot program started 2 years ago
- Focus was on developing centers of excellence for each climate zone
- Summer Institute to develop Curriculum & course material
- Web page to share materials
- Opportunity for raters to participate in field work