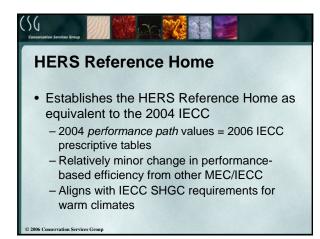
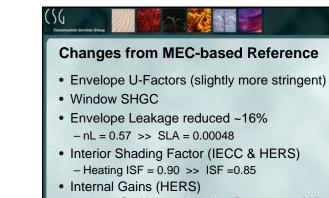


ation Services Group 📶 👹 🖓 🎧 🏹 🖬 🛁

2006- Next Generation of HERS

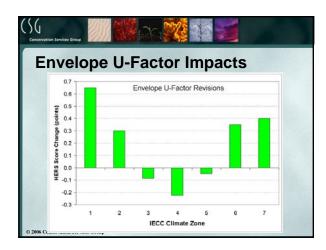
- Three *different* changes that have *different* effects on the results!
- New Reference Home = 2004 IECC
- Expanded Rating Score
- "Score" to "Index"

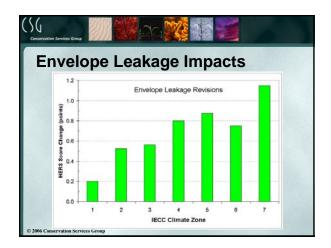

(SG

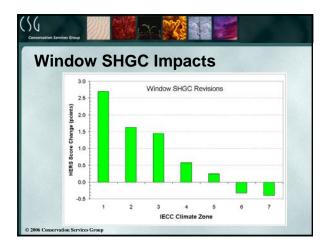

(SG conservation services Group 2010 2010 2010 2010 2010

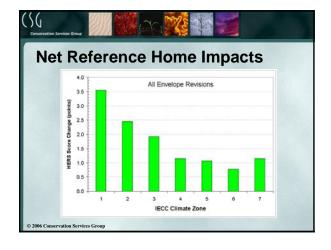
Technical Enhancements

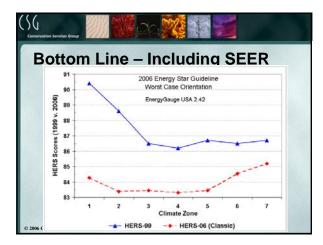
- Enhance technical basis of energy ratings
- Update standards to align with current national standards
 - IECC, zero energy homes, tax credits
- Change in NAECA efficiency minimums

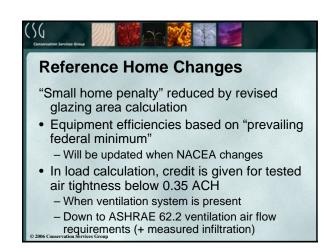

 Water heating EF (1/2004)
 - SEER 13 Air Conditioning






ervation Services Groun


- 72,000 Btu/day >> based on floor area and Nbr



Constants former constant and the second sec

Mechanical Ventilation System definition

"A fan designed to exchange the air in the house with outside air, sized to provide whole-house service per ASHRAE 62.2, and controlled automatically (i.e. not requiring human intervention to turn on and off). The presence of a remotemounted on-off switch or dedicated circuit breaker labeled "whole house ventilation" (or equivalent) shall not disqualify a system from meeting the requirement of automatic control."

<image><section-header><section-header><section-header><section-header><section-header><section-header><list-item><section-header>

ervation Services Group

Formal interpretation

(SG

- Measured air leakage is *added* to ventilation system flow
 - Using quadrature equations from ASHRAE
- Ventilation system flow shall not be less than
 - 7.5 x (Nbr+1) + 0.01 x CFA for the purpose of calculating the score
 - Input actual flow rate and hourly program to software
 - Adjustments are made for very tight or leaky homes

tion Services Group

RATED HOME Changes

- Ducted/hydronic distribution efficiency calculated by ASHRAE 152-2004
 - Duct leakage testing required
- RESNET interpretation of 152 for rating purposes
 - Defaults may be used for many of the 152 required inputs
- Default (untested) duct efficiencies have changed
 - Generally higher
- No distinction between "observable" leakage or none

© 2006 Conservation Services Gro

(SG

Did duct defaults:				
Distribution System Configuration and Condition:	Forced A Heating	ir Systems Cooling		
Observable leakage pathways ³ with distribution system components located in <i>unconditioned</i> space	0.70	0.70		
Observable leakage pathways with entire distribution system located in conditioned space ⁴	0.75	0.75		
Distribution system components located in unconditioned space	0.80	0.80		
Entire distribution system located in <i>conditioned</i> space	0.85	0.85		
Proposed ⁵ "leak free" with entire air distribution system located in the conditioned space	1.00	1.00		
Proposed "leak free" air distribution system with components located in the unconditioned space	0.95	0.95		
"Ductless" ⁶ systems	1.00	1.00		

CSG Conservation Services Group	Distribution System Configuration and Condition	Forced Air Systems	Hydronic Systems
NEW	Distribution system components located in unconditioned space	<u>0.80</u>	<u>0.95</u>
Defaults:	Distribution systems entirely located in conditioned space	<u>0.88</u>	<u>1.00</u>
	Proposed "reduced leakage" with entire air distribution system located in the conditioned space (d)	<u>0.96</u>	
	Proposed "reduced leakage" air distribution system with components located in the unconditioned space	0.88	
© 2006 Conservation Services Group	<u>"Ductless"-systems (e)</u>	<u>1.00</u>	

Experimental information informat

Expanded Rating Score

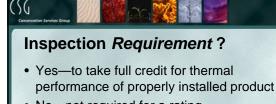
- Adds allowance for standard consumption to reference home
 - Efficient lighting (10% of qualifying locations)
 - Refrigerator (775 kWh/year)
 - Dishwasher (0.46 EF)
 - Ventilation fan energy (If rated home has ventilation system) at 0.45 W/CFM
 - Assuming (7.5 x (Nbr+1)+0.01xCFA) CFM
 - Ceiling fan (if in rated home) at 23.5 CFM/W

an Services Group and Market Group and Services Group

(SG

Expanded Rating Score:

- *IF* you want to do better than the reference home by x%,
- THEN you must do x% better than the defaults on lighting and appliances
- Adds allowance for "all" typical nonheating, cooling or water heating energy uses to both rated and reference home


On site power production

- On-site Power Production (OPP): Net electric power produced at the Rated Home
- OPP = gross electrical power production minus purchased fossil fuel energy used to produce the on-site power
- Converted to "Equivalent Electric" at 40% effi'cy
- Examples: PV, fuel cell, propane generator

 If conversion efficiency exceeds 40%, will increase score (less will decrease)

Constant of the second se

- Provide specific modeling guidance
 Based on results of field assessment
 - Primarily for software developers, not raters
- · Other details
- Installation practices, framing, compression

- No—not required for a rating
 Accept defaults if you don't inspect
 - Equivalent to Grade III
 - Parallel to other HERS requirements
 Envelope, duct testing
- Applies to all types of insulation

artino Services Group 📶 🚳 🖉 🖉 🗾

(SG)

Technical Amendments (rater)

- Standard blower door testing procedures – Specifies door, vent, damper positions during tests
- Requires that all pressure testing equipment be annually field tested for calibration, or re-calibrated
 HERS provider must maintain a log of testing/calibration
- Establishes minimum content requirement for onsite inspection procedures manual

 Providers must supply to raters

s Services Group

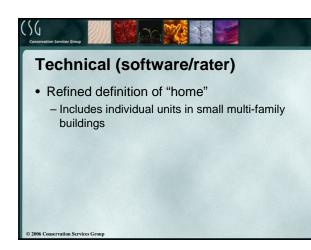
Technical Amendments (rater)

- Requires uniform method of calculating conditioned floor area of home – ANSI Standard Z765-2003
 - With exception to 5' ceiling height limit
- Includes furnace/boiler auxiliary energy consumption (i.e., combustion/blower fans) in HERS rating score
 - Allows credit for ECM motors
 - Will require accurate inputs of EaE ratings of mechanical equipment in ratings

© 2006 Conservation Services Group

(SG)

Technical (software/rater)


- Establishes default framing factors for wall, floor, ceiling to be used in rated homes
- Changes in nMEUL a,b coefficients for heating oil to be same as natural gas
 - Eliminates differences in HERS score associated with different fossil fuels
 - Other a,b coefficients updated as needed
 - NAECA requirements for Hot water, A/C

ervation Services Groun

Technical (software/rater)

(\$6

- Establishes baseline data and rules needed to include wood burning appliances
- Establishes reference/default values
- Defines when they should be included in rating
 - Limited to the part of the building load that cannot be met by automatic system
 - Up to 100% (i.e. sole heating system)

Conservative defaults Ashrake 152 procedures With Exceptions: no need to separate supply/return No requirement to test air flow Conservative defaults Other as specified in RESNET interpretation No requirement to test buffer zone pressures or

2006 Conservation Services Gr

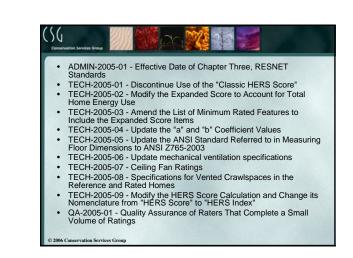
Technical Amendments (software)

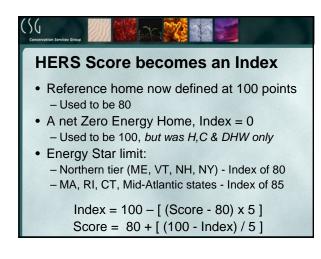
- Specifically removes from the HERS Reference home any renewable energy systems present in the Rated home
- Establishes standard ventilation strategy for both reference and rated home
 - Ensures consistency for this occupant behavior (eliminates rater/software provider judgment)

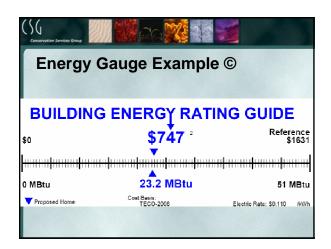
Technical Amendments (software)

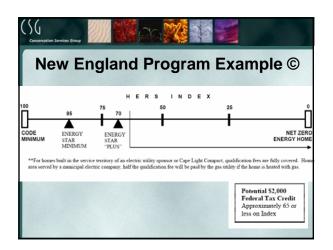
plenum operating pressures

- Specifies source of data for Fannie Mae EEM Present Value
 - RESNET to be provided with discount rate annually
 - Established weighted life of energy efficiency measures at 23 years
- Establishes how EEM Present Value shall be calculated
- Fannie Mae's Energy Value and Annual Energy Savings
- FHA and Freddie Mac's Present Worth of Energy Savings


© 2006 Conservation Services Gro


(SC CEREMENTER Source S


Technical Amendments (software)


- Establishes consistent method of converting HSPF and SEER to inputs appropriate for models that separately model compressor / evaporator / fan / defrost (e.g., DOE-2)
- Requires that software adjust HSPF and SEER to account for climate and mis-sizing of equipment Including electric auxiliary heat for heat pumps
- Establishes rule base for determining design loads for sizing purposes

ation Services Gr

