IBACOS

HOME TO INNOVATION

Building America Research Update 2004 RESNET Conference San Diego, CA March 1, 2004

IBACOS' CURRENT PROJECTS

Whole House Analysis / Integrated Design Tools

Retrofit of Existing Buildings

•Implementation Strategies for High Performance Housing

Moisture Management

Foundation Systems

Advanced Lighting Systems and Strategies

•Advanced HVAC Systems and Strategies

•Energy Efficient Hot Water Systems

- Energy Baseline
- Advanced Lighting Design strategies
- Direct Replacement

DOE BASELINE

- 0.8 w * Finished Floor Area + 455
- 90% incnadeescent, 10% fluorescent
- Hard wired and Plug-In lighting
- No consideration of light quality
 - Glare, contrast, shadows
- Annual Average Use Schedules
 - -6.49 Hrs Living spaces
 - -5.44 Hrs Bedrooms

- Low end, switched outlets, 1 surface mounted light per room
- Approx 1 fixture / 100 SF
- High end 10,000 SF house lots of cans, accent, track, decorative
- 3 4 fixtures per 100 SF
- How do you compare equally?

IBACOS'S EXPERIENCES

- Simplified Modeling & Actual Design
- Take standard W/SF and make it "efficient"
- Direct Substitution just in Kitchen / Family room
- 901 kWh per year base case
- 309 kWh per year with substitution
- 28% reduction in Total Annual Lighting Energy

Annual Site Energy Use

	Minneapolis		Washingt	ton, D.C.	Phoenix		
	Base Case	Efficient	Base Case	Efficient	Base Case	Efficient	
End-Use	MBtu	MBtu	MBtu	MBtu	MBtu	MBtu	
Space Heating	86.83	106.28	44.47	65.02	3.20	7.51	
Space Cooling	1.68	1.13	2.30	1.52	16.51	13.44	
DHW	32.80	32.80	28.10	28.10	20.40	20.40	
Fans	1.30	1.47	0.87	1.05	2.20	1.85	
Equipment	31.87	31.87	31.87	31.87	21.87	21.87	
Lighting	40.33	14.48	40.33	14.48	38.06	13.73	
Total	194.80	188.03	147.93	142.05	102.24	78.80	
% savings		3.48		3.98		22.93	

Annual Source Energy Use

	Minneapolis		Washing	ton, D.C.	Phoenix		
े	Base Case	Efficient	Base Case	Efficient	Base Case	Efficient	
End-Use	MBtu	MBtu	MBtu	MBtu	MBtu	MBtu	
Space Heating	88.84	108.79	45.50	66.58	3.27	7.69	
Space Cooling	5.30	3.56	7.27	4.81	52.16	42.46	
DHW	33.46	33.46	28.66	28.66	20.81	20.81	
Fans	4.11	4.65	2.74	3.33	6.95	5.85	
Equipment	100.70	100.70	100.70	100.70	69.11	69.11	
Lighting	127.45	45.77	127.45	45.77 120.28		43.38	
Total	359.85	296.93	312.32	249.85	272.57	189.30	
% savings		17.49		20.00		30.55	

Advanced Residential Lighting Design

- Look at lighting quality
- Concealed sources Coves, valances, etc
- Layered lighting Ambient, Task and Accent
- All fluorescent sources

LIGHTING

Advanced Residential Lighting Design

- Larger Home
- 3121 Square Feet
- DOE Baseline 2951 kWh Annual
- ARLD All Fluorescent Sources
- 3867 kWh Annual Hard Wired lighting only
- 31% increase

Advanced Residential Lighting Design

- Mid sized Home
- DOE Baseline 1591 kWh Annual
- ARLD All Fluorescent Sources
- 2208 kWh Annual Hard Wired lighting only
- 38% increase

POTENTIAL IMPACT ON RATING

- Simply counting % of lamps does not tell whole story
- Single "Average" Baseline may not be appropriate
- Unfortunately we don't have another answer yet

- Size Matters
- But Technology Matters More

- Water Heater Performance
- Factors Affecting Energy Efficiency
- Factors Affecting Sizing
- Testing Criteria
- Performance Results from TRNSYS Simulations

- Factors that Impact Water Heater Energy Efficiency
- Fuel Conversion Efficiency
- Inlet (mains) Water Temperature
- Daily Hot Water Volume
- Standby Losses (Storage Volume)
 - Tank Set Point Temperature
 - Ambient Air Temperature
 - NAECA Minimum Efficiency Standards

- NAECA Minimum Energy Factors (EF)
 - Domestic Water Heaters

	4-15-91	1-20-04
Gas-Fired Storage	0.62 - (0.0019V)	0.67 – (0.0019V)
Electric Storage	0.93 - (0.00132V)	0.97 - (0.00132V)

Minimum efficiency is tied to storage volume EF decreases from smallest to largest sizes

- 13% decrease for electric
- 15% decrease for gas

- Factors that Impact Water Heater Sizing
- Design Load Estimation Methods/Guidelines
- Hot Water Delivery Capacity
 - Inlet (mains) Water Temperature
 - Tank Set Point Temperature
 - On/Off Tolerance (differential temperature)

• HUD-FHA Minimum Water Heater Standards

# of Bathrooms		1 - 1.5		2 – 2.5			3 – 3.5				
# of Bedrooms	1	2	3	2	3	4	5	3	4	5	6
Gas-Fired Storage	43	60	60	60	70	72	90	72	82	90	92
Electric Storage	30	44	58	58	72	72	88	72	88	88	102
Oil-Fired Storage	89	89	89	89	89	89	89	89	89	89	89

- Adopted by ASHRAE and ASPE
- No longer used by HUD-FHA

• Water Heater Rating Criteria

	DOE Test Procedure	Conventional Controls	Energy Smart Controls
Draw Initiation:	Upper Element OFF	Upper Element Point Temperate	OFF or Set ure Achieved
Draw Termination:	T _{MAX} - 25°F	105°F	105°F
Initial Tank Temp.:	$135^{\circ}F \pm 5^{\circ}F$	T _{SP} - 10°F	T _{SP} - 5°F
Set Point Temp.:	$135^{\circ}F \pm 5^{\circ}F$	115°F - 155°F	110°F - 155°F
Upper Element Diff.:	unspecified	20°F	5°F
Lower Element Diff.:	unspecified	10°F	5°F
Supply Water Temp.:	$58^{\circ}F \pm 2^{\circ}F$	55°F	55°F
Ambient Air Temp.:	65°F to 70°F	67.5°F	67.5°F
Water Draw Rate:	$3.0 \pm 0.25 \text{ gpm}$	3.0 gpm	3.0 gpm

Water Heater Performance First Hour Rating

50-Gallon Electric Water Heater
Conventional Controls

Water Heater Flow -Outlet Temperature — Lower Tank Temperature Performance 160 8 140 7 120 6 Flow - (gpm) **£**₁₀₀ 5 $T_{SP} = 135^{\circ}F$ Temp. 80 60 3 58°F Т, 2 40 14 Gal 40 Gal =135°F T_{T} 20 0 0 $T_{MIN} = 110^{\circ}F$ 0.0 0.2 0.3 0.5 0.6 0.7 0.8 0.1 0.9 1.0 0.4 Time (hours)

- 50-Gallon Electric Water Heater
 - Conventional Controls

Outlet Temperature — Lower Tank Temperature

Water Heater Performance

 $T_{SP} = 135^{\circ}F$ $T_{I} = 58^{\circ}F$

T_{MIN}=105°F

 T_{T}

=125°F

160 140 120 **£**₁₀₀ Temp. 80 60 40 40 Gal 16 Gal 20 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time (hours)

Flow

- 50-Gallon Electric Water Heater
 - Conventional Controls

8

7

6

5

3

2

1

0

1.0

Flow - (gpm)

Flow — Outlet Temperature — Lower Tank Temperature

Water Heater Performance

 $T_{SP} = 120°F$ $T_{I} = 55°F$ $T_{T} = 110°F$

T_{MIN}=105°F

- 50-Gallon Electric Water Heater
 - Conventional Controls

8 7

6

5

3

Flow - (gpm)

Water Heater Performance

 $T_{SP} = 120^{\circ}F$ $T_{I} = 55^{\circ}F$ $T_{T} = 115^{\circ}F$ $T_{MIN} = 105^{\circ}F$

- 50-Gallon Electric Water Heater
 - Energy Smart[™] Controls

• First-Hour Rating – 50-gallon electric water heater

• 30-Minute Rating – 50-gallon electric water heater

- Best Performing current Technology
 - Sealed Combustion High Output
 - Instantaneous Gas
 - Heat Pump Water Heater
- Issues are cost and capacity

- A major limit to adequate performance is incoming water temperature
- Heat Pump would have more rapid recovery and Instant Gas could be significantly smaller if we had a higher inlet temperature

So, what about heat recovery Increased inlet temperature from pre-tempering

- GFX, ineffective due to coincident operation. It is best during showers.
- We are exploring non-coincident water heat recovery.
- Direct exchange, heat pump, small solar (Northern solution)
- Water stored at 80 to 90 degrees has almost no loss to the home, and reduces needed rise by 40 %

- Key Next Steps
- TRYNSYS model for water heaters and storage
- Definition of base case for system efficiency
 - Is it % energy compared to standard ground water temperature source?
 - How much use in what pattern?
 - What distribution efficiency for the system?

IBACOS

HOME TO INNOVATION

Duncan Prahl dprahl@ibacos.com

