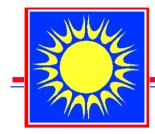
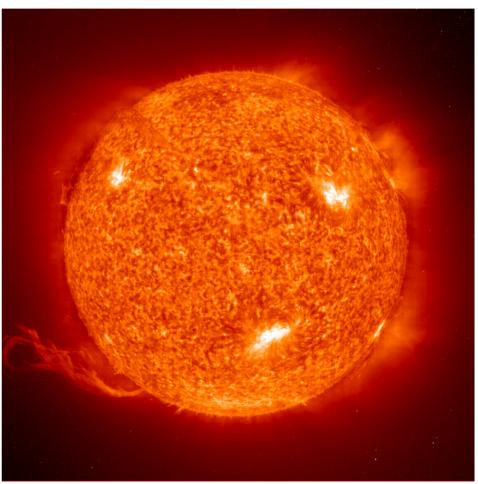
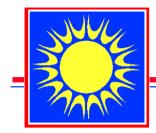


FLORIDA SOLAR ENERGY CENTER

A Research Institute of the University of Central Florida

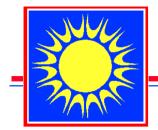

Let the <u>Sunshine</u> In: Rating Solar Water Heating and Photovoltaic Systems Danny Parker RESNET, March 2004



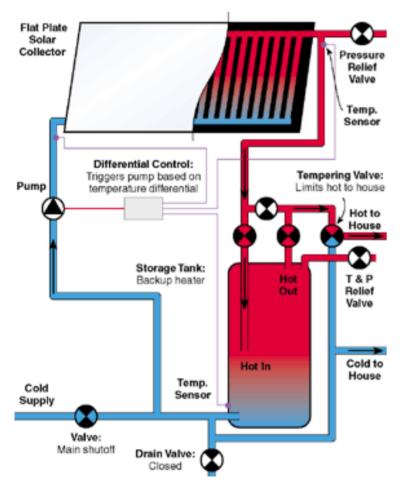

For ratings . . .

Why rate the sun?

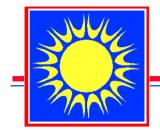
- Solar water heating is effective around the U.S.
- Solar electricity (photovoltaics or PV) is more common
- Both have large potential with very efficient homes

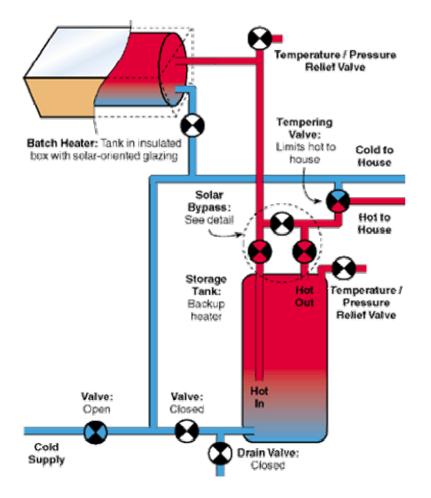

Popular Myth:

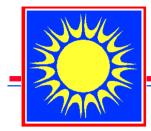
Solar hot water systems are non-cost effective dinosaurs.


Truth:

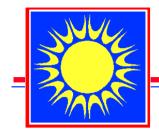
Solar water heating systems remain very cost effective for larger households with electric resistance water heating.




Active Solar Hot water

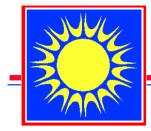


Passive Solar Hot Water



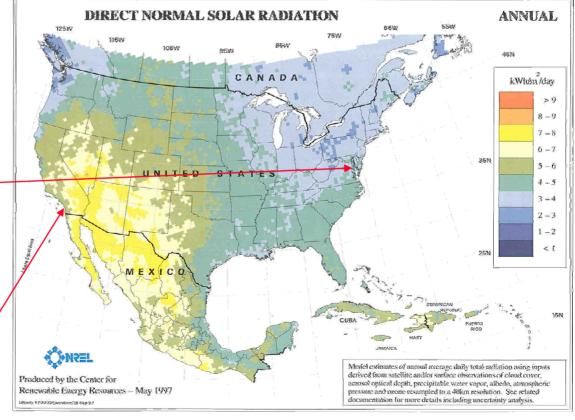
□ Already there...

- Lower kWh or fuel use impacts rating
- Varies with system size, load and location
- Load varies with house size in climate (inlet water temperature)



Generic Solar System

- \square 4 x 8 ' collector
- Standard type
 - > $F_r U_L = 4.17 \text{ W/m}^2$
 - > F_r TauA= 0.75
- Glycol loop with heat exchanger
- 80 gallon storage
- PV pumped
- Simulated in differing locations in the U.S.


How many HERS points?

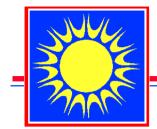
□ <u>Baltimore</u>: Base= 80.5

- > 3420 kWh DHW
- > 1790 kWh saved
- ▶ 53% solar fraction
- Rating goes to 82.1

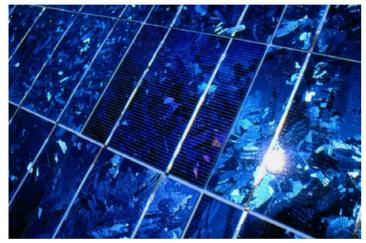
□ <u>San Diego</u>: Base= 82.1

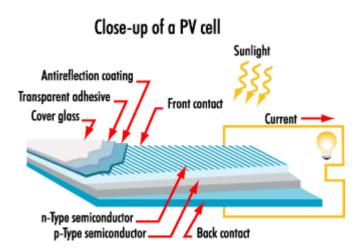
- > 3040 kWh
- > 2170 kWh savings
- 71% solar fraction
- Rating goes to 86.2

Non-cost effective Dinosaurs?

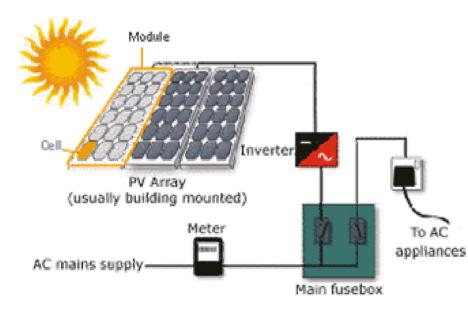

Solar water heating systems can be very cost effective for larger households. The SWAP program showed an annual 1,570 kWh savings in households with 4 or more persons at a cost \$1,500. Though a long payback, that's a 8.4% after tax real rate of returnsuperior to conventional investments.

Considerations:

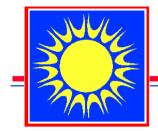

Consider solar water heating if you have a larger household. It's a natural solution in sunny climates.


Reference:

J. Harrison and Steven Long, 1998. "Solar Weatherization Assistance Program," FSEC-CR1028-98, Florida Solar Energy Center, Cocoa, FL.

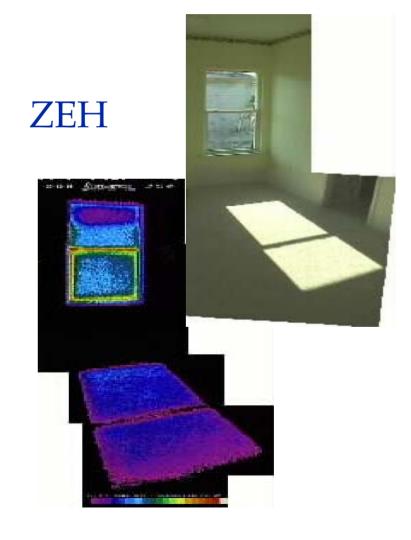

What are Photovoltaics?

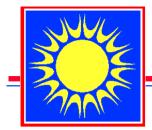
How do PV systems look?



Stand-off/Roof Mounted ... or... Building Integrated (BIPV)

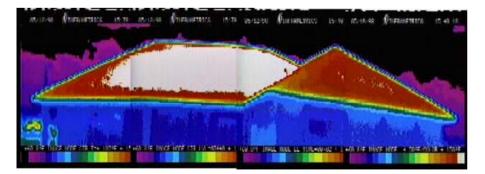
- Good partners
- Old saw is still true:
- *"First* efficiency, then solar"
- Together, they can really make a difference
- First house in Florida to nearly eliminate site energy use.
- Super-efficient +solar= Wow!

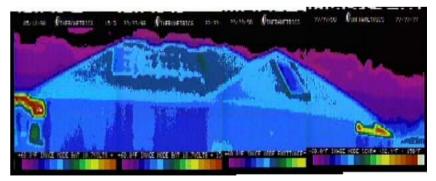


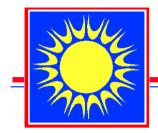


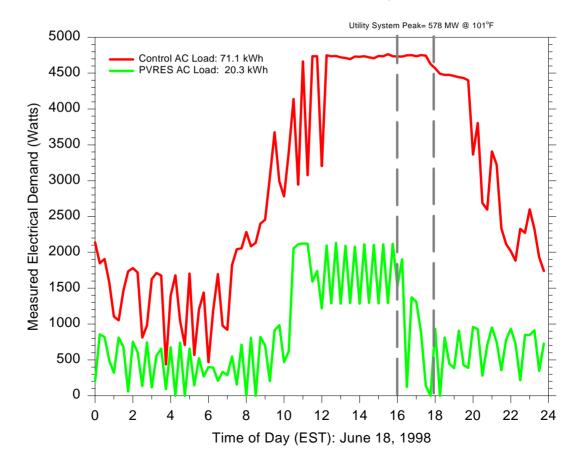
Could windows be important?

Control House

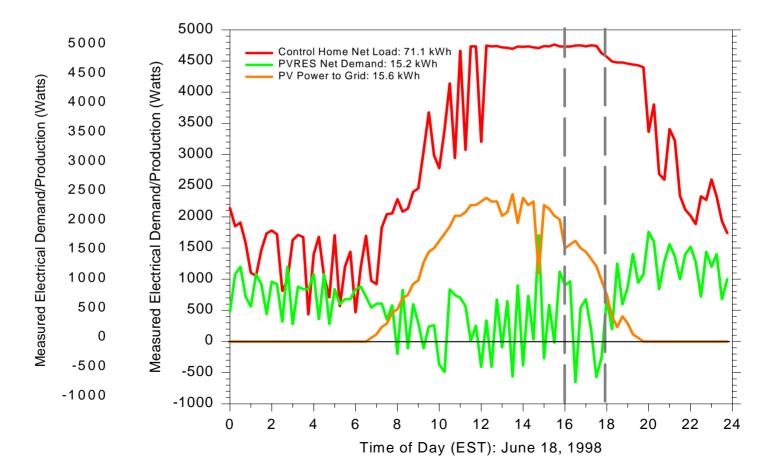

Are roofs important?


Control House

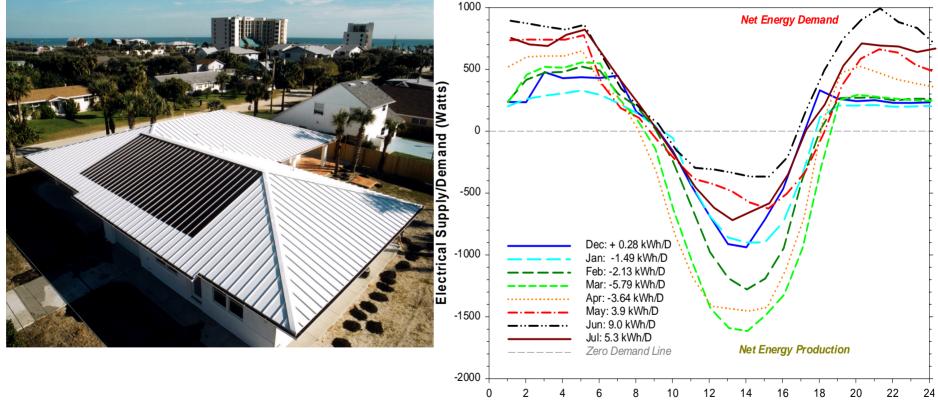




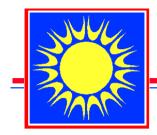
- Seeing is believing!
- Side-by-side test
- ZEH used 80% less measured cooling!
- 90% of energy use generated
- No peak demand when solar included
- First FL ZEH home still active in Lakeland, FL



Control and PV House AC Load on the Electric Grid, Summer Peak Day: June 18, 1998



Control and PV House Net Load on the Electric Grid, Summer Peak Day: June 18, 1998

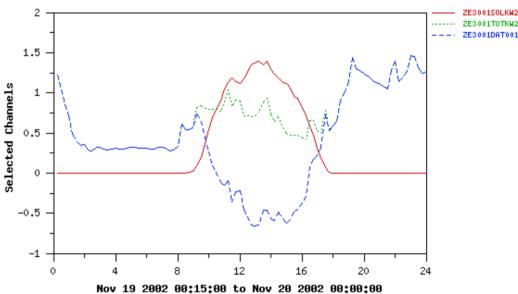


New Smyrna Beach Zero Energy Home Time of Day Net Demand by Month (2001-2002)

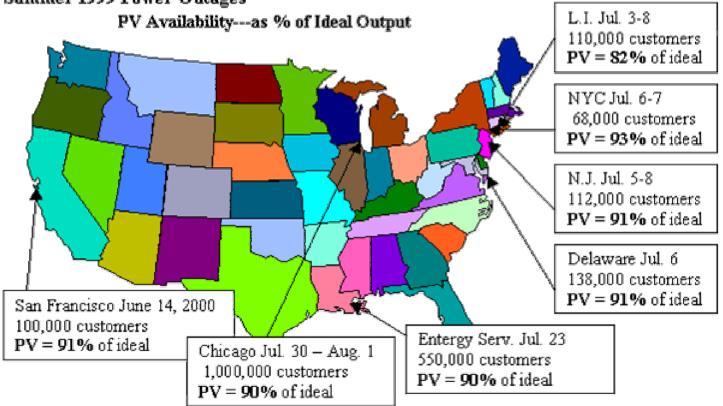
Time of Day: EST

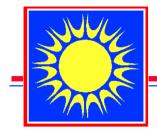
CA ZEH #1: Livermore, CA

- □ 3,079 sqft conditioned
- High efficiency
 - Insulation package/RBS
 - Trellis shading
 - High effic. windows
- NightBreeze smart economizer/ ventilation system
- SDHW with instantaneous gas auxiliary



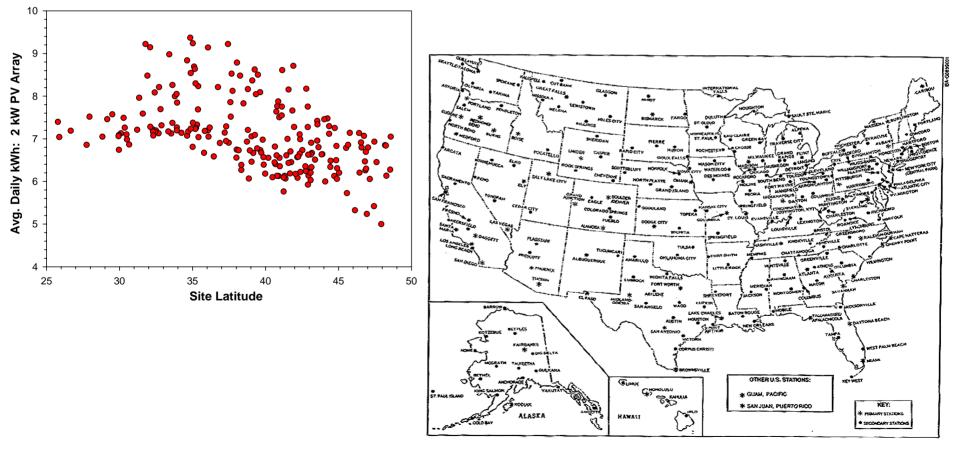
Nice Web Site ... on-line data



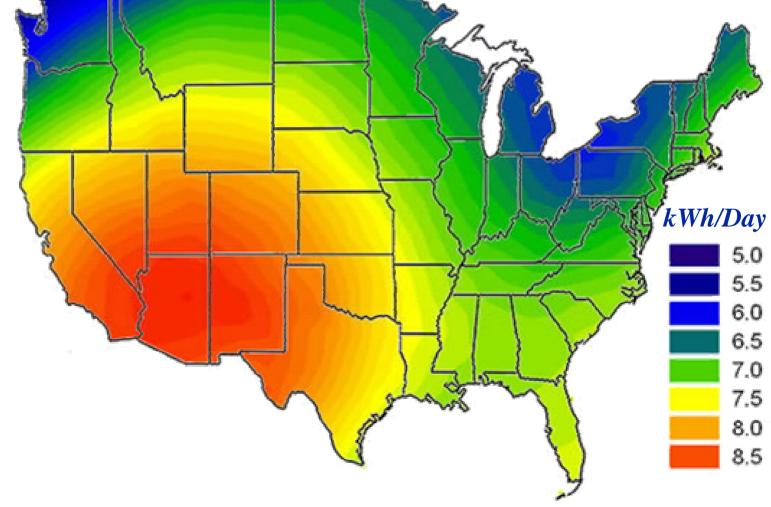


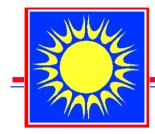
http://www.fsec.ucf.edu/bldg/active/zeh/ livermore/index.htm

Source: "Residential Customer-Sited Photovoltaics Niche Markets 1999," Herig et al., and "<u>Mapping the Value of Commercial PV Applications in the US—Accounting for</u> <u>Externalities</u>," Perez et al., American Solar Energy Society Conference Proceedings, Portland, Maine, June 1999.

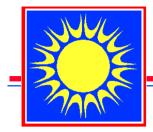

PV Performance: How different?

- Simulated generic 2 kW PV system
 Grid-tied with an 2 kW inverter
 239 TMY2 locations around the U.S.
- Annual solar
 electric power
 production

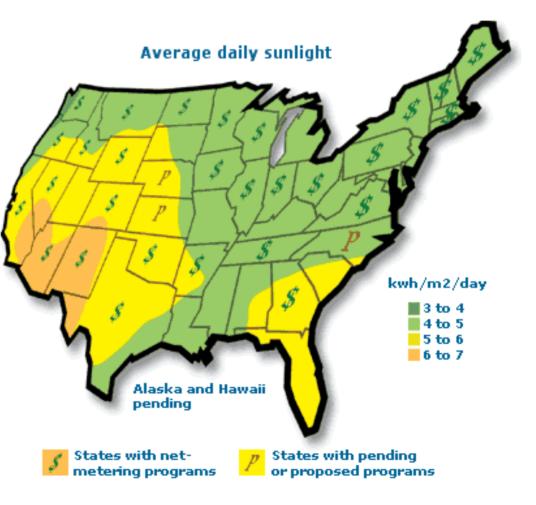


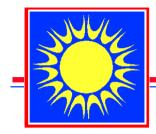


Rooftop Photovoltaic System Performance vs. Latitude for the Continental United States (215 TMY2 Sites)



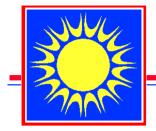
HERS Guidelines for PV


- No consideration for on site PV power (for now)
- Implementation Issues:
 - Apportion to end-uses?
 - How to treat houses with gas/oil heating and water heating?
 - How to treat "sell-back"?
 - Peak same value as other periods?
- Important to address with HERS



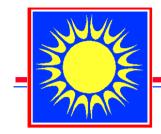
Some working assumptions...

- All power whether used or sent to utility grid is credited to Rated home's energy use.
- Net metering assumed
- Credit against oil/gas converted to electric equivalent representative of modern power plants



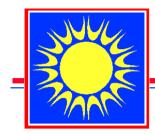
Two Proposed Methods...

- Method #1: Apply PV power to total home energy, including nonrated equipment
- Method #2: Apply PV power only to rated part of use (35-65% of total)
- Second method would result in higher scores, but misleading



<u>Proposed Rating Method</u>

- Normalize fossil fuel end-uses
- □ Apportion PV to all end uses
- Calculate percent of purchased energy:
 - PE = (Total-PV)/Total
 - *Score*= 100 (*PE* * *TnML/TRL*)*20)
 - Where:
 - *TnML= Total of all normalized Loads TRL= Total Reference Home Loads*
- <u>Advantage</u>: Easy to estimate impact on HERS Scores



PVImpact: Example

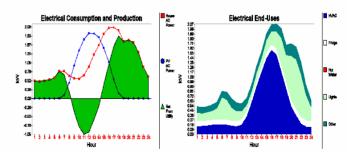
- HERS Reference Building
 - > Score = 80.0
- San Diego
 - Total Energy Use = 9,580 kWh/yr (32.7 MBtu)
 - Heat, Cool, Hot Water=
 3,135 kWh (10.7 MBtu)
 - 2 kW PV array producing 2,500 kWh/yr (8.5 MBtu)
 - > $PE_{frac} = (Total-PV)/Total$
 - > Score= 80 + (1-PE)/0.05
- □ *Score* = *85.2*

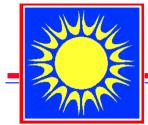
EnergyGauge USA V. 2.3

- □ Version 2.3 is released...
- □ Faster, more powerful
- Improved rendering of building geometry, heat pumps, cool roofing.
- Simulation of photovoltaic systems
- Solar water heating systems (active & batch)
- Hourly output of energy-end use, thermal and humidity data

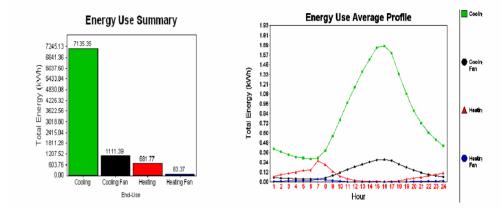
Photovoltaic System Performance Summary

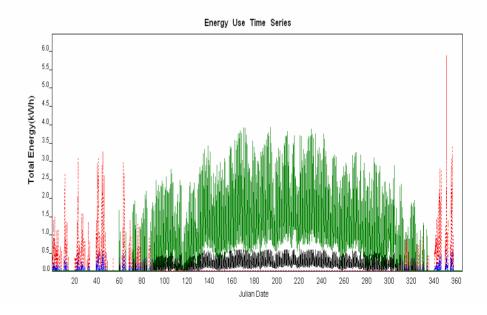
Centex Unknown Sacramento, CA, 12345-6789 Registration #:	Title: ZEH4 CA Base SB Building Type: Detailed	TMY City: CA_SACRAMENTO Elec Util: Pacific Gas & Electric Gas Util: California Average Run Date: 12/26/2002 14:05:10
--	---	---

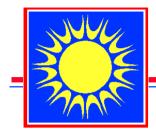

Start Date: January 1


End Date: December 31

Photovoltaic System Inputs									
#	Size m²(ft²)	Orientation Degrees (N=0,E=90)	Tilt Degrees (0 = flat)	ArrayType	# Modules	Array Rated Efficiency	Array Rating @STC Wp	Inverter Type	Inverter Rated Efficiency
1	33.05(356.06)	180	23	AstroPower AP1206(12	34	0.111	4080	Trace SVV 4048PV	90 %
Total	33.05(356.06)	NA	NA	NA	34	0.11101	4080	NA	90.0 %

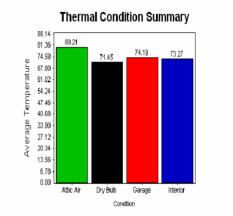

Average Daily System Performance									
#	Solar Insolation POA (KWh/m²)	DC Energy (KWh)	Array Efficiency	AC Energy (KWh)	Conversion Efficiency	Overall ACEnergy/ Rating/Sun	PV AC to House	Avg.Capacity Factor เกษณะ(24%สะเยาตุ)	PV(AC) as % of HVAC
1	4.58	15.29	10.10 %	13.56	88.7 %	72.5%	26.42 %	13.8 %	211.56 %
Total	4.58	15.3	10.10 %	13.6	88.7 %	72.5%	26.4 %	13.8 %	212.0 %

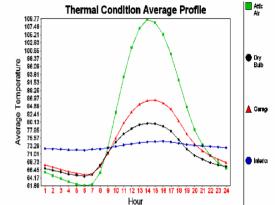


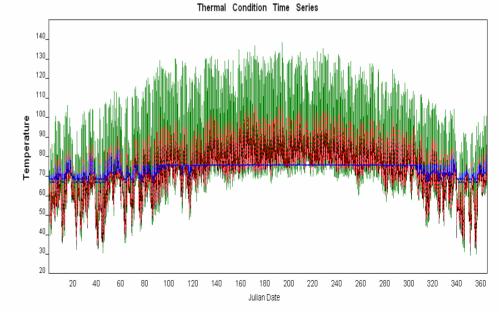


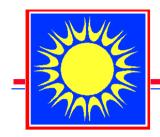
Power of Hourly Reports...

- Energy end-uses, temperature, RH
- Time-series and averages
- Visual data: intuitive understanding of how to reduce loads
- Example new home in Tampa, FL →



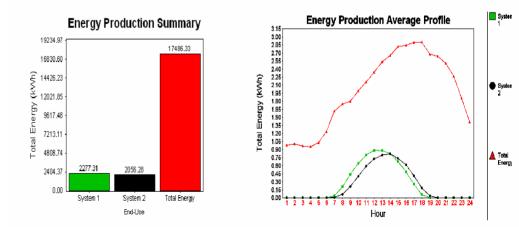





Hourly Reports: Thermal Conditions

- Same building in Tampa, FL
- Temperatures in time-series and averages
- Attic extremes: large portion of cooling load....

Evaluation of ZEH Designs


- **Same home in Tampa...**
- Add 2 kW PV array facing south
- PV System #2 is identical, but faces west
- Which better?
- West better matches load shape, but building is far too inefficient for PV!
- □ Make it more efficient!

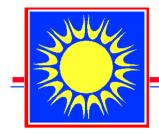
HOURLY SUMMARY REPORT

FPC Customer

Project Title: FPC_New Building Type: Detailed TMY City: FL_TAMPA Elec Util: Florida Power Corp Gas Util: Florida Average Run Date: 12/26/2002 14:56:06

Start [Date: January 1		End Date:		
End-Use	Units	Average	Minimum	Maximum	Total
System 1	kWh	0.26	0.00	1.47	2277.3
System 2	kWh	0.23	0.00	2.50	2056.3
Total Energy	kWh	2.00	0.43	7.32	17486.3





Which do *you* want?
How cost effective?

"What's the cost effectiveness of kitchen cabinets?" – Steve Loken

Economics: Big Picture

- "Economists would conclude from an lifecycle perspective, that the earth is not worth saving"
 Don Osborne, SMUD
- Perspective from space:
 - Dead Mars once had an atmosphere and water...
 - Earth: High stakes atmospheric experiment
 - Taking care of our home is our responsibility

