

Glass Industries Inc.

Windows and Occupant Comfort

Presentation for Resnet Conference March 2, 2004

> Jim Larsen Cardinal Glass Industries

The 7 Point Comfort Scale

80% Satisfaction Criteria

The ASHRAE Comfort Program

Basic Thermal Comfort Model Parameters 🛛 🛛 🛛			
Environmental Conditions	Results		
Air Temperature 72.0 🚔 *F	ET⁼	72.0 •F	
MRT 🗹 Link with Air 72.0 🚔 *F	SET*	75.1 • F	
Air Velocity 19.7 🚔 fpm	TSENS	-0.1	
Relative Humidity 50 🛎 🗶	DISC	-0.1 Comfortable	
○ Summer	PMV	-0.46	
Activity	PPD	9 %	
ASHRAE Standard 55	PD	13 %	
Metabolic Rate 1.0 🚔 met	PS	75 %	
Clothing	TS	-0.7	
ASHRAE Standard 55 Winter	Tneutral	71.5 (Humphreys)	
Clothing level 0.90 🖨 clo	Tneutral	71.6 (Auliciems)	

Using the Comfort Program to Determine <u>Thermostat Setpoints</u>

 Set *mean radiant temperature* equal to air temperature (assumes exterior walls are at room temp)

 Use standard conditions for relative humidity and air movement, seasonal clothing levels, and sedentary activity

Comfort at the <u>Thermostat</u>

Thermostat Recommendations

Heating: 70°F minimum

Cooling 78°F maximum

Actual settings for 80% comfort compliance will vary with MRT

Conditions for Comfort Analysis

- Discomfort is usually a response to temperature extremes
- Recommend that comfort analysis be performed for peak conditions
- Analogous to sizing HVAC equipment if occupant comfort can be met at time of peak load it should be adequate during off peak times

Comfort Analysis for Windows

- Clothing Insulation seasonal variation
- Activity Level
- Air Movement
- Humidity

sedentary

<20 fpm

- 50% RH
- Radiant Temperature
 - Function of glass size, proximity, surface temperature
- Air Temperature

thermostat setting

Worst Case for Window Comfort

Large window Close proximity Design weather conditions

Comfort vs. Proximity to Cool Surface

Proximity

The comparisons presented in this discussion use a *two foot* separation distance from the exterior wall for analyzing the comfort impacts of large windows.

Exterior Wall/Window Temperatures

The exterior wall/window temperature will be a function of outdoor temperature and wall/window insulation level.

Perimeter Wall Temperatures in Winter

Glass Type or Wall Insulation

Window vs. Wall Trade-Offs

- The previous chart shows that window surface temperatures are much cooler than an insulated wall
- Trading off window performance for more insulation in the wall may deliver the same energy performance, but can seriously erode comfort
- If the goal of a weatherization program is to improve occupant comfort along with a reduction in heating bills need to consider upgrading single pane windows before looking to further increase wall insulation

Winter Comfort vs. Thermostat & Wall

Cold Climate Experience

Learn from Past Experience

Solar Offset to Comfort Vote

For every 100 btu/ft² of solar gain, the comfort vote shifts to the positive by approximately 0.8

Examples:

Cool (-2) plus moderate sun = Slightly Cool (-1) Neutral (0) plus high sun = Warm (+2)

Solar Impacts vs. Initial Comfort

no sun low sun med sun high sun

Solar Properties of 3 Glass Types

	<u>SHGC</u>	Heat Gain	Temp
2 pane clear	0.76	182	91
High Solar Gain Low-E (0.72 (HSLE)	169	101
Low Solar	0.41	98	84
Gain Low-E	(LSLE)		

Why is the High Solar Gain Low-E so Hot?

To maximize solar gains, the coating is placed on the airspace side of the inboard pane of glass.

The low-E coating absorbs twice as much solar energy as clear glass, so the inside pane of glass heats up to 25+ degrees hotter than the room air temperature.

Comfort for Summer Peak Day

Thermostat Settings for Summer Comfort

Cooling Thermostat

78°F is an adequate setpoint temperature for:A room with no windows

• A room with low solar gain windows

For rooms with high solar gain glass:

- Tuff it out
- Close the drapes
- Leave the room
- Turn the thermostat down

Comfort Summary

- The minimum heating thermostat setpoint for comfort should be 70°F
 - Perimeter zone conditions may require up to a 4°F <u>setup</u> to maintain 80% comfort compliance
- The maximum cooling thermostat setpoint for comfort should be 78°F
 - Perimeter zone conditions may require up to a 4°F <u>setdown</u> to maintain 80% compliance

Windows and Energy Codes

- The baseline window requirements in the IECC form a basis for minimal comfort expectations.
- Low U-factor's in cold weather climates deliver warm glass surface temperatures
- Low solar heat gain in hot weather climates reduce cooling loads and temperature fluctuations

Window Caution!

When using a performance path analysis to qualify a design that deviates from basic window requirements beware:

- The occupants may not be satisfied with the comfort conditions of their "energy efficient" building
- The real energy consumption can be much greater than predicted if the occupant chooses to set the thermostat for comfort.

