Infiltration / Duct Lkg / Window Comp.

BATCH REPORT

2477sf 18317cuft Columbus OH

*.blg label ... 35a(ach nat) 100d(ducts CFM25) 1w(base windows) all entered as CFM25

Annual Load (MMBtu/yr)	Heating	g	Cooling	Water Heating	Rating	g	
C:\\Brandon35a100d1w-atCFM25.blg	1250cfm25	52.7	all 1/2 Htg 16.8	18.0	0.35AirLkg	88.6	
C:\\Brandon35a150d1w-atCFM25.blg	1300	54.4	16.9	18.0	0.36	88.5	
C:\\Brandon35a200d1w-atCFM25.blg	1350	56.0	17.0	18.0	0.38	88.3	
C:\\Brandon35a250d1w-atCFM25.blg	1400	57.5	17.0	18.0	0.39	88.1	
C:\\Brandon35a300d1w-atCFM25.blg	1450	58.9	17.1	18.0	0.41	87.9	
C:\\Brandon40a100d1w-atCFM25.blg	1425	54.8	16.8	18.0	0.40	88.4	
C:\\Brandon40a150d1w-atCFM25.blg	1475	56.5	16.9	18.0	0.41	88.2	
C:\\Brandon40a200d1w-atCFM25.blg	1525	58.2	17.0	18.0	0.43	88.0	
C:\\Brandon40a250d1w-atCFM25.blg	1575	59.6	17.0	18.0	0.44	87.8	
C:\\Brandon <u>40a</u> 300d1w-atCFM25.blg	1625	61.1	17.1	18.0	0.46	87.6	
C:\\Brandon45a100d1w-atCFM25.blg	1605	56.9	16.8	18.0	0.45	88.1	
C:\\Brandon45a150d1w-atCFM25.blg	1655	58.7	16.9	18.0	0.46	87.9	
C:\\Brandon45a200d1w-atCFM25.blg	1705	60.4	16.9	18.0	0.48	87.7	
C:\\Brandon45a250d1w-atCFM25.blg	1755	61.9	17.0	18.0	0.49	87.5	
C:\\Brandon45a300d1w-atCFM25.blg	1805	63.3	17.1	18.0	0.51	87.3	
C:\\Brandon50a 00d1w-atCFM25.blg	1791	59.2	16.8	18.0	0.50	87.8	:
C:\\Brandon50a150d1w-atCFM25.blg	1841	61.0	16.9	18.0	0.52	87.6	
C:\\Brandon50a200d1w-atCFM25.blg	1891	62.6	16.9	18.0	0.53	87.4	
C:\\Brandon50a250d1w-atCFM25.blg	1941	64.2	17.0	18.0	0.54	87.2	
C:\\Brandon50a300d1 <u>w-at</u> CFM25.blg	1991	65.6	17.1	18.0	0.56	87.0	
C:\\Brandon50a300d1.5w-atCFM25.blg	1991	67.2	19.9	18.0	0.56	86.4	
C:\\Brandon50a350d1.5w-atCFM25.blg	2041	68.6	20.0	18.0	0.57	86.2	
C:\\Brandon50a400d1.5w-atCFM25.blg	2091	69.9	20.1	18.0	0.59	86.0	

Window Orientation w/c East

Indexes:	Increase	Approximate drop in score
Whole house air leakage	0.05ach	0.3
Duct leakage	50cfm25	0.2
Window area increase	+50%	0.6
extrapolate to	+10%	0.1

The results support my original observation of relative score stability in the Sampled or Volume builder application. This model transitions from 0.35 ACHnat/100cfm25 duct lkg to a whole house corrected leakage rate of 0.50 ACHnat/400cfm25/with 150%window area and is still 86.0 or EStar.

The ACH goes from 0.35 to 0.50

The ducts go from 100cfm25 to 400 cfm25

The window area increases by 50%

We can expect 100% of the sampled houses to fall within these factors

Conclusion: a 2+ point score cushion is secure. (BOPs are constructed on this type of margin.)

REM/Rate - Residential Energy Analysis and Rating Software v10.1 NP

This information does not constitute any warranty of energy cost or savings.

© 1985-2001 Architectural Energy Corporation, Boulder, Colorado.

Dave Roberts Comment:

I also think it is worth showing the math for score changes in the 86-88 point range:

Point score = 100 - TnML/TRL*20

For an 88, TnML/TRL = (100 - 88)/20 = 0.60

For an 86, TnML/TRL = (100 - 86)/20 = 0.70

0.70 / 0.60 = 1.17, or the 86 home uses 17% more energy than the 88 home!

